Контрольные вопросы_2

- 1. Что такое электромагнитный канал?
- 2. Что такое канал утечки?
- 3. Назовите факторы эффективности канала утечки.
- 4. Что является показателем качества канала утечки?
- 5. Что такое аддитивные помехи? Приведите примеры.
- 6. В чем отличие между Кз и Кэкр электромагнитного поля?
- 7. Сформулируйте смысловой критерий безопасности сообщений.

Значения коэффициентов экранирования некоторых ограждающих конструкций на частотах 100, 500 и 1000 МГц Таблица 1

		Экранирование (дБ)		
Номер	Тип здания	(коэффициент экранирования ${\pmb k}_{{}_{\!\scriptscriptstyle{{\rm 9KP}}}}$)		
		на частотах:		
		100	500	1000
		МГц	МГц	МГц
	Деревянное здание с толщиной стен			
	20 см:			
1.	окно без решетки	5-7	7-9	9-11
		(1,8-2,2)	(2,2-2,8)	(2,8-3,5)
2.	окно закрыто решеткой с ячейкой 5 см	6-8	10-12	12-14

		(2,0-2,5)	(3,2-4,0)	(4,0-5,0)
	Кирпичное здание с		,	
	толщиной кирпичной стены			
	1,5 кирпича:			
3.	окно без решетки	13-15	15-17	16-19
		(4,5-5,6)	(5,6-7,0)	(6,3-8,9)
4.	окно закрыто решеткой с	17-19	20-22	22-25
	ячейкой 5 см	(7,0-8,9)	` '	(12,6-
			12,6)	17,8)
	Железобетонные здания с			
	ячейкой арматуры 15х15 см и			
	толщиной 160 мм:			
5.	окно без решетки	20-25	18-19	15-17
		(10,0- 17,8)	(8,0-8,9)	(5,6-7,0)
6.	окно закрыто решеткой с	28-32	23-27	20-25
	ячейкой 5 см	20-32	<u> </u>	20-23
	A-TOHROH 5 CW	(25,1-	(14,1-	(10,0-
		39,8)	22,4)	17,8)

Примечание: оконный проем составляет не более 30% от площади стены.

Значения напряженности электромагнитного поля Е, создаваемого ПЭВМ

Таблица 2

Номер	Значения напряженности электромагнитного			
 /	поля \mathbf{E} (мк $\mathrm{B/m}$)			
Π/Π	на частотах			
	100 МГц	500 МГц	1000 МГц	
1.	630	1400	1400	
2.	610	1370	1390	
3.	620	1420	1400	

4.	610	1360	1400
5.	600	1360	1390
6.	630	1410	1400