«Защита информации от утечки по акустическому каналу пассивными методами»

4.1 Краткие теоретические сведения

Акустический (речевой) канал — это канал распространения акустических волн через газовую, твердую и жидкую среду. Человеческая речь — наиболее распространенный способ обмена информацией между людьми, поэтому попытки перехвата речевой акустической информации (утечки по акустическому каналу) давно уже стали традиционными. Особая заинтересованность злоумышленников в получении речевой информации объясняется тем, что речь довольно часто содержит конфиденциальные и даже секретные сведения.

Сегодня известны различные способы негласного съема акустической информации. Довольно прост в реализации и способ подслушивания с использованием виброакустических каналов утечки информации, который даже не требует от злоумышленника кратковременного захода в прослушиваемое помещение.

Для перехвата речевой информации по виброакустическим каналам в качестве средств акустической разведки используются электронные стетоскопы и закладные устройства с датчиками контактного типа. Наиболее часто для передачи информации с устройств используется радиоканал, таких закладных поэтому их радиостетоскопами. В качестве датчиков средств акустической разведки используются контактные микрофоны (вибропребразователи), чувствительность которых составляет от 50 до 100 мкВ/Па, что, дает возможность прослушивать разговоры и улавливать слабые звуковые колебания (шорохи, тиканье часов и т.д.) через бетонные и кирпичные стены толщиной более 100 см, а также двери, оконные рамы и инженерные коммуникации. Электронные стетоскопы и закладные устройства с датчиками контактного типа позволяют перехватывать речевую информацию без физического доступа людей в защищаемые помещения. Их датчики наиболее часто устанавливаются на наружных поверхностях зданий, на оконных проемах и рамах, в смежных (служебных и технических) помещениях за дверными проемами, ограждающими конструкциями, на перегородках, трубах систем отопления и водоснабжения, коробах воздуховодов вентиляционных и других систем.

Сила (интенсивность) звука — количество звуковой энергии, проходящей за единицу времени через единицу площади, измеряется в ваттах на квадратный метр ($Bт/м^2$). Звуковое давление и сила звука связаны между собой квадратичной зависимостью, то есть увеличение звукового давления в два раза приводит к увеличению силы звука в четыре раза. Уровень силы звука — отношение силы данного звука I к нулевому (стандартному) уровню, за который принята сила звука $I_0 = 10^{-12} \, Bt/m^2$, выраженное в децибелах (дБ)

$$N = 10\lg \frac{I}{I_0} \tag{4.1}$$

Уровни звукового давления и силы звука, выраженные в дБ, совпадают по величине. Порог слышимости — наиболее тихий звук, который еще способен слышать человек на частоте $1000~\Gamma$ ц, что соответствует звуковому давлению $2\times10^{-5}~H/m^2$. Громкость звука — интенсивность звукового ощущения, вызванная данным звуком у человека с нормальным слухом. Громкость зависит от силы звука и его частоты, измеряется пропорционально логарифму силы звука и выражается количеством дБ, на

которое данный звук превышает по интенсивности звук, принятый за порог слышимости. Единица измерения громкости — фон. Динамический диапазон — диапазон громкостей звука или разность уровней звукового давления самого громкого и самого тихого звуков, выраженная в дБ.

Возможности по перехвату информации будут во многом определяться затуханием информационного сигнала в ограждающих конструкциях и уровнем внешних шумов в месте установки контактного микрофона. Результаты экспериментальных исследований звукоизоляции Q стен и сплошных перегородок приведены в таблице 4.1, причём затухание

$$Q = 10 \lg \frac{I_{\text{В ПОМЕЩЕНИИ}}}{I_{\text{В КОРИЛОРЕ}}},$$
(4.2)

где $I_{\text{в помещении}}$ – сила звука в защищаемом помещении;

 $I_{B\ KOPUЛOPF}$ – сила звука в незащищённом коридоре.

Таблица 4.1 – Звукоизоляция стен и сплошных перегородок

Вид конструкции	Толщина	Среднее значение Q , дБ, для среднегеометрической частоты, Γ ц				
	конструкции					
		50	500	1000	2000	4000
Кирпичная кладка,	0,5 кирпича	40	42	48	54	60
оштукатуренная с двух	1 кирпич	44	51	58	64	65
сторон	1,5 кирпича	48	55	61	65	65
	2 кирпича	52	59	65	70	70
	2,5 кирпича	55	60	67	70	70
Железобетонная панель	100 мм	40	44	50	55	60
	160 мм	47	51	60	63	63
	300 мм	50	58	65	65	65
	400 мм	55	61	67	70	70
Гипсобетонная панель	86 мм	33	39	47	54	60
Керамзитобетонная	80мм	34	39	47	52	60
панель	120мм	37	39	47	54	51
	140мм	43	47	53	57	61
Шлакоблоки,	220мм	42	48	54	60	63
оштукатуренные с двух						
сторон						
Древесностружечная	30 мм	26	26	26	26	26
плита						

4.2 Практические задания

Задание 4.2.1. Для защиты речевой информации ограниченного доступа при проведении переговоров компания, арендующая свои производственные площади, использует специальное помещение — защищённый служебный кабинет (ЗСК). Двери и окна ЗСК надёжно защищены от прослушивания техническими средствами защиты информации. Однако кирпичная перегородка, отделяющая ЗСК от незащищённого

коридора, неарендуемого компанией и допускающего возможность проникновения в него злоумышленников, имеет толщину всего в полкирпича. Размеры перегородки 10×3 м. Размеры одинарного силикатного кирпича по СТБ 1160-99 «Кирпич и камни керамические. Технические условия» составляют $250\times120\times65$ мм.

Используя данные табл. 4.1, определить стоимость дополнительной кирпичной кладки, усиливающей звукоизоляцию стены для обеспечения затухания Q информационного сигнала в стене на частоте $1000 \, \Gamma$ ц до уровня не менее:

```
58 дБ – для варианта 1,
```

- 61 дБ для варианта 2,
- 65 дБ для варианта 3,
- 67 дБ для варианта 4,

при стоимости кирпича 250 \$ за кубометр и при стоимости кирпичной кладки 25 \$ за кубометр. Толщиной швов между кирпичами, потерями кирпича на бой и другие цели, стоимостью других работ и материалов при усилении звукоизоляции стены в первом приближении пренебречь.

Варианты считаются по номеру одного студентов бригады в списке группы: $\mathbb{N} \ 1$ – вариант 1, $\mathbb{N} \ 4$ – вариант 4, $\mathbb{N} \ 5$ – снова вариант 1, $\mathbb{N} \ 6$ – снова вариант 2 и т.д.

Задание 4.2.2. Используя формулу (4.2) и табл. 4.1, определить для своего варианта задания 1, во сколько раз сила звука в коридоре при использовании обсчитанного Вами варианта кирпичной кладки будет больше или меньше при установке не кирпичной перегородки, а перегородки из материала:

```
железобетонная панель, толщина 100мм — подвариант 1, она же, толщина 160 мм — подвариант 2, она же, толщина 300 мм — подвариант 3, она же, толщина 400 мм — подвариант 4, гипсобетонная панель, толщина 86 мм — подвариант 5, шлакоблоки, толщина 220 мм — подвариант 6, древесностружечная плита (ДСП), толщина 30 мм — подвариант 7, керамзитобетонная панель, толщина 80 мм — подвариант 8, она же, толщина 120 мм — подвариант 9, она же, толщина 140 мм — подвариант 10.
```

Подварианты задания, как и в задании 1, считаются по номеру одного из студентов бригады в списке группы: № 1 — подвариант 1, № 10 — подвариант 10, № 11 — снова подвариант 1, № 12 — снова подвариант 2 и т.д.

4.3 Контрольные вопросы

- 1. Что называют каналом утечки речевой информации?
- 2. Что такое громкость звука, сила звука?
- 3. Какие средства могут использоваться для перехвата речевой информации?
- 4. Что является причиной возникновения виброакустического канала утечки информации?
- 5. Какие средства могут использоваться для защиты информации от утечки по акустическому каналу?
- 6. В чем принципиальное отличие между активными и пассивными методами защиты речевой информации?
 - 7. Что называют порогом слышимости?